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SUMMARY

An optimal solution of the call admission control and routing problem in multi-service loss networks, in
terms of average reward per time unit, is possible by modeling the network behavior as a Markov decision
process (MDP). However, even after applying the standard link independence assumption, the solution of
the corresponding set of link problems may involve considerable numerical computation. In this paper, we
study an approximate MDP framework on the link level, where vector-valued MDP states are mapped into a
set of aggregate scalar MDP states corresponding to link occupancies. In particular, we propose a new
model of the expected reward for admitting a call on the network. Compared to Krishnan’s and Hübner’s
method [11], our reward model more accurately reflects the bandwidth occupancy by different call
categories. The exact and approximate link MDP frameworks are compared by simulations, and the results
show that the proposed link reward model significantly improves the performance of Krishnan’s and
Hübner’s method. Copyright # 2004 AEIT.

1. INTRODUCTION

We study the problem of optimal call admission control

(CAC) and routing in multi-service loss networks such

as ATM and STM networks, and IP networks, provided

they are extended with resource reservation capabilities.

The objective is to maximize the revenue from carried

calls, while meeting constraints on the quality of service

(QoS) and grade of service (GoS) on the packet and call

level respectively. First, CAC determines the set of feasible

paths between the source and destination which offer suf-

ficient QoS to the new and existing calls in terms of delay,

jitter and data loss. Second, the network should choose to

reject the call or to accept it on some path among the set of

feasible paths. While contributing to the maximization of

the average revenue for the operator, this choice must com-

ply with GoS constraints in terms of call blocking prob-

abilities and call set-up delays.

Modern CAC and routing mechanisms are state-depen-

dent rather than static, which means the decision to reject

the request for a new call, or to accept it on a particular

path depends on the current occupancy of the network.

A state-dependent CAC and routing policy is a mapping,

for every call class, from a network state space to a set

of possible routing decisions, see Figure 1. A state-depen-

dent mechanism offer advantages both in terms of achiev-

able revenue and ability to control the QoS and GoS.

This paper deals with a particular form of state-

dependent CAC and routing, where the behavior of the net-

work is formulated as Markov decision process (MDP)
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[4, 19]. A MDP is a controlled Markov process, where the

set of state transitions from the current Markov state to

other Markov states depends on the decision or action

taken by the controller in the current state. In the MDP fra-

mework, each call is described by a expected reward para-

meter and the objective is to maximize the reward from

carried calls.

The expected reward parameter is a versatile tool for

controlling the operator revenue and GoS. The reward

parameter can be set proportional to the user charge of a

call with mean holding time. Alternatively, the reward

parameter can be used to control the distribution of call

blocking probabilities among the call classes.

Optimal state-dependent CAC and routing policies can

be computed using an exact network MDP framework.

However, the cardinality of the network state and policy

spaces in the exact framework can be very large even for

moderate-size networks, making the computational cost of

MDP-based CAC and routing prohibitive. The objective of

the work presented in this paper is to reduce the computa-

tional cost to manageable levels, while retaining the per-

formance of MDP-based CAC and routing.

A necessary modeling simplification is to decompose

the network into a set of links assumed to have indepen-

dent traffic and reward processes respectively. When for-

mulating the MDP framework for each link, calls with

the same bandwidth requirement are aggregated into a

common category, which corresponds to one dimension

in the link state vector.

The computational burden of each link MDP task

increases when the number of categories increases, or

when the ratio between the link capacity and the band-

width requirement increases for some of the call cate-

gories. In the first case, the increase is exponential, in

the second case it is polynomial. Simplified link MDP fra-

meworks with reduced computational cost have been pro-

posed, including methods based on state aggregation

[9, 11], decomposition of the link Markov process [16]

and polynomial cost approximation [13, 18].

Hwang, Kurose and Towsley proposed a simplified link

MDP framework based on state aggregation with scalar

link state representing the link occupancy [9]. A birth–

death process based on Pascal approximation [3] drives

the one-dimensional Markov chain. The MDP task is

solved by a one-step policy iteration algorithm.

Also Krishnan and Hübner proposed a simplified link

MDP framework based on state aggregation with scalar

link state representing the link occupancy [11]. Transition

probabilities between link states were derived from link

occupancy probabilities obtained by a recursive procedure

due to Kaufman [10] and Roberts [17]. The MDP task was

also solved by one-step policy iteration.

Dziong, Liao and Mason proposed a simplified link

MDP framework based on decomposition of the link

Markov process into per-category link Markov processes

[5]. They observed that if the holding times of wide-band

(WB) calls are significantly longer than for narrow-band

(NB) calls, the NB process changes state much more often

than the WB process. This suggests that the NB and WB

process can be analyzed separately. The NB process is ana-

lyzed separately for each state of the WB process, and the

WB process is analyzed by taking the average ‘distur-

bance’ of the NB process into account.

The CAC and routing problem for networks with

blocked NB calls cleared and blocked WB calls delayed

was studied by Nordström and Dziong [15, 16]. In this

case, stage aggregation cannot be used due to the fact that

the state space is not coordinate convex. According to

simulation results in Reference [16], the decomposition

method is relatively efficient in case of delayed WB

call set up, but can fail considerably in case of pure loss

networks.

Marbach, Mihatsch and Tsitsiklis applied reinforce-

ment learning to estimate the optimal second-degree

polynomial link-cost approximation [13]. Although the

complexity of each simulation step is fixed and low,

the required number of simulation steps is large (in the

order of 107).

Rummukainen and Virtamo proposed an analytical

framework for computing the cost relative values as a

linear combination of a modest number of basis vectors

[18]. Single-coordinate and double-coordinate monomial

vectors up to some degree, were considered as basis

vectors. The computational complexity of determining

the coefficients of the polynomials was identical to the

complexity of Krishnan’s and Hübner’s method, i.e. pro-

portional to the capacity of the link.

Figure 1. State-dependent call admission control (CAC) and
routing.
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The contribution of this paper is threefold. First, we pro-

pose a new model of the link reward to be used with the

state aggregation method by Krishnan and Hübner [11].

Second, we formulate Krishnan’s and Hübner’s link

MDP framework in terms of reward maximization rather

than in terms of cost minimization. Third, we present an

extensive numerical evaluation, based on simulation, of a

set of MDP-based routing algorithms and a conventional

routing method called least loaded routing (LLR).

The numerical results show that the modified link

reward model significantly improves the average reward

rate, compared to the original model used by Krishnan

and Hübner. Moreover, Krishnan’s and Hübner’s state

aggregation method, with our modified link reward model,

yields higher reward rate than Hwang’s, Kurose’s and

Towsley’s state aggregation method. The best MDP meth-

ods outperform the conventional routing method (LLR).

A numerical comparison to the polynomial cost approx-

imation by Rummukainen and Virtamo is left for future

work.

The paper is organized as follows: Section 2 formulates

the CAC and routing problem in terms of offered traffic,

network model and optimization objective. Section 3

describes the network, exact link MDP model and approx-

imate link MDP models based on state aggregation.

Section 4 outlines the MDP computation procedure.

Section 5 presents the numerical results of the perfor-

mance of MDP-based routing as well as LLR routing.

Finally, Section 6 concludes the paper.

2. PROBLEM FORMULATION

The network is assumed to consist of a set of switching

nodes, interconnected by bi-directional links according

to some network topology. Each bi-directional link con-

sists of two uni-directional links, carrying traffic in oppo-

site directions.

The network is offered traffic from K classes which

are, for sake of simplicity, assumed to be subject to deter-

ministic multiplexing. The jth class is characterized by the

following:

� origin–destination (OD) node pair,

� bandwidth requirement bj [Mbps],

� Poissonian call arrival process with rate lj [s�1],

� exponentially distributed call holding time with mean

1=mj [s],

� set of alternative routes, Wj and

� reward parameter rj 2 ð0;1Þ

The classes are classified into G bandwidth categories.

The ith category is characterized by:

� bandwidth requirement bi [Mbps],

� average mean call holding time 1=mi [s] and

� average reward parameter ri.

The task is to find an optimal routing policy p* which

maximizes the mean reward from the network, defined

as:

RðpÞ ¼
X
j2J

rjlj ð1Þ

where lj denotes the average class j call acceptance rate.

3. MDP MODELING

3.1. Network decomposition

In the exact MDP framework, the network state and policy

spaces can be very large, even for moderate-size networks.

We therefore decompose the network into a set of links

assumed to have independent traffic and reward processes

respectively [7].

The network Markov process is decomposed into a set

of independent link Markov processes, driven by state-

dependent Poisson call arrival processes with rate

lsj ðx; pÞ, where s denotes the link index, x denotes the link

state and p denotes the CAC and routing policy. In particu-

lar, a call connected on a path consisting of l links is

decomposed into l independent link calls characterized

by the same mean call holding time as the original call.

The network reward process is decomposed into a set of

separable link reward processes. The link call reward para-

meters rsj ðpÞ fulfill the obvious condition that

rj ¼
X
s2Sk

rsj ðpÞ ð2Þ

where Sk denotes the set of links constituting path k, spe-

cified by the routing policy p. Different models for com-

puting link reward parameters are possible [7]. In this

paper, we use a simple rule: the call reward is distributed

uniformly among the path’s links, resulting in the formula

rsj ðpÞ ¼ rj=l, where l denotes the number of links in the

call’s path.

Even in the decomposed model, the state space can be

quite large if many call classes share the links. One way

to reduce the state space is to construct a modified link

reward process in which the link call classes with the same

bandwidth requirement are aggregated into one category
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i 2 I ¼ f1; . . . ;Gg with average reward parameter defined

as [7]:

rsi ðpÞ ¼
P

j2Ji r
s
j ðpÞlsj ðpÞP

j2Ji l
s
j ðpÞ

ð3Þ

where Ji denotes the set of classes that belongs to the ith

category, and l
s

j ðpÞ denotes the average rate of class j calls

accepted on link s. In the following, this simplification is

adopted, which reduces the number of effective classes to

the number of classes with unique bandwidth requirement.

3.2. Exact link MDP model

This section describes the exact link MDP model, which

provides the basis for the MDP computational procedure

presented in the next section. The state in the exact link

model is given by x ¼ fxig, where xi denotes the number

of category i calls on the link. The state space X for the

exact link model is given by:

X ¼ x ¼ fxig :
X
i2I

bixi4Cs

( )
ð4Þ

where Cs denotes the capacity of link s.

It can be shown that the size of the state space grows

like:

S � 1

G!

Y
i2I

ðNs
i þ 1Þ ð5Þ

where Ns
i ¼ bCs=bic denotes the maximal number of cate-

gory i calls on the link.

The Markov decision action a is represented by a vector

a ¼ faig; i 2 I, corresponding to admission decisions for

presumptive call requests. The action space is given by:

A ¼ a ¼ faig : ai 2 f0; 1g; i 2 If g ð6Þ

where ai ¼ 0 denotes call rejection and ai ¼ 1 denotes

call acceptance. The permissible action space is a state-

dependent subset of A:

AðxÞ ¼ a 2 A : ai ¼ 0 if xþ �i =2X; i 2 If g ð7Þ

where �i denotes a vector of zeros except a one in position

i 2 I.

The Markov chain is characterized by state transition

probabilities pxyðaÞ which express the probability that

the next state is y, given that action a is taken in state x.

In our case, the state transition probabilities become:

pxyðaÞ ¼
lsi ðx; pÞai�ðx; aÞ; y ¼ xþ �i 2 X; i 2 I

ximi�ðx; aÞ; y ¼ x� �i 2 X; i 2 I

0; otherwise

8<
:

ð8Þ

where lsi ðx; pÞ denotes the ith category arrival rate to the

link in state x under routing policy p, mi denotes the aver-

age departure rate of category i calls, and �ðx; aÞ denotes

the average sojourn time in state x. The link call arrival

rates, lsi ðx; pÞ, are given by:

lsi ðx; pÞ ¼
X
j2Ji

lkj ðpÞ�s
j ðx; pÞ

Y
c2Sknfsg

ð1 � Bc
j ðpÞÞ ð9Þ

where s 2 Sk, B
c
j ðpÞ denotes the probability that link c has

not enough capacity to accept a class j call, and �s
j ðx; pÞ

denotes a filtering probability defined as:

�s
j ðx; pÞ ¼ P

X
c2Sknfsg

pcj ðx; pÞ < rj � psj ðx; pÞ jBj

8<
:

9=
;
ð10Þ

where Bj denotes the condition that no link on path k is

in the blocking state (note that psj ðx; pÞ is constant in

Equation (10)). In other words, �s
j ðx; pÞ is the probability

that the path net-gain is positive (on condition that there is

enough path capacity to carry the call). The filtering prob-

ability can be computed using link state distributions [8],

or approximated with one according to experiments in

Reference [7]. The lkj ðpÞ denote the arrival rate of class j

to path k 2 Wj, and is given by the following load sharing

model [7]:

lkj ðpÞ ¼ lj
l
k

j ðpÞP
h2Wj

l
h

j ðpÞ
ð11Þ

where l
k

j ðpÞ denotes the average rate of accepted class j

calls on path k, and lj denotes the arrival rate of class j.

The average departure rate for the ith category is com-

puted as:

mi ¼
X
j2Ji

pijm�1
j

" #�1

ð12Þ

where pij denotes the probability that an arbitrary ith cate-

gory call found on the link is from class j 2 Ji:

pij ¼
l
s

j ðpÞP
c2Ji l

s

cðpÞ
ð13Þ

where l
s

j ðpÞ denotes the average class j call acceptance

rate on link s.

The average sojourn time �ðx; aÞ in state x is given by:

�ðx; aÞ ¼
X
i2I

ximi þ ail
s
i ðx; pÞ

( )�1

ð14Þ
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The expected reward in state x is given by

Rsðx; aÞ ¼ �sðxÞ�ðx; aÞ, where �sðxÞ is obtained from

�sðxÞ ¼
X
i2I

rsi ximi ð15Þ

3.3. New approximate link MDP model

In the aggregate state link model, the G-dimensional

micro-state is aggregated into a one-dimensional macro-

state m [11]:
m ¼

X
i2I

bixi ð16Þ

The macro-state process fmg does not, in general, form

a Markov process, since future evolution form state m will

clearly depend on the sample path history (characterized

by the micro-states x) into state m. The set of possible

states is denoted M:

M ¼ m : m ¼
X
i2I

bixi4Cs; xi50

( )
ð17Þ

The size of the state space is significantly smaller than

for the exact link model. For example, if the bandwidth

requirements are integer valued, and at least one of the

categories requires one bandwidth unit, the state space will

contain S ¼ Cs þ 1 states.

The set of permissible actions in state m is denoted

A ðmÞ:
A ðmÞ ¼ a 2 A : ai ¼ 0 if mþ bi =2M; i 2 If g ð18Þ

We approximate the macro-state process by a Markov

process with the following state transition probabilities:

pmnðaÞ ¼
lsi ðm; pÞai�ðm; pÞ; n ¼ mþ bi 2 M; i 2 I

E½xi jm�mi�ðm; pÞ; n ¼ m� bi 2 M; i 2 I

0; otherwise

8<
:

ð19Þ

where lsi ðm; pÞ is given by a formula analogous to

Equation (9), and E½xi jm� is the expected number of cate-

gory i calls when the link occupancy is m. According to

Reference [10], E½xi jm� can be approximated by

liðm� bi; pÞqðm� biÞ ¼ miE½xi jm�qðmÞ ð20Þ

which is exact for the complete sharing link access policy,

i.e. when calls always are accepted if there is sufficient free

capacity. The link occupancy equilibrium distribution,

fqðmÞg, is given by [10, 17]:

mq ðmÞ ¼
X
i2I

lsi ðm� bi; pÞ
mi

biqðm� biÞ ð21Þ

where q ðmÞ ¼ 0 for all m < 0. The recursion starts with

q ð0Þ ¼ 1 and ends with normalizing the results for obtain-

ing the probabilities. The recursion is exact for the com-

plete sharing access policy.

The expected sojourn time in state m is:

�ðm; aÞ ¼
X
i2I

E½xi jm�mi þ ail
s
i ðm; pÞ

( )
ð22Þ

The expected reward delivered when leaving state m is

given by Rsðm; aÞ ¼ �sðmÞ�ðm; aÞ, where the reward accu-

mulation rate �sðmÞ is given by:

�sðmÞ ¼
X
i2I

~rrsi ðpÞE½xi jm�mi ð23Þ

where ~rrsi ðpÞ is the modified link reward parameter for cate-

gory i. Below, we formally explain the formula for the

reward accumulation rate we make the following remarks.

In the state aggregation MDP model, the basic modeling

entity is the link occupancy m, not the number of calls from

each category xi. The bandwidth m is shared, in a statistical

sense, between all call categories. We can only express the

probability P½i jm� that a unit of bandwidth is occupied by

category i, given that the link occupancy is m. Note that in

the exact link model, this statistical sharing does not

occur—the bandwidth bi of a category i is only used by

this category.

The reward accumulation rate is obtained as a sum of

average per-category reward rates, ~rrsi ðpÞE½xi jm�mi. Here,

~rrsi ðpÞ denotes the reward obtained when serving a category

i call in the state aggregation model. Due to the statistical

sharing of bandwidth bi among the G different categories

on the link, we make the important observation that every

category c 2 I will contribute to the average reward ~rrsi ðpÞ.
We call the quantity ~rrsi ðpÞ the modified reward, to distin-

guish it from the original reward rsi ðpÞ obtained in

Equation (3) which offers dedicated portions of band-

widths to each category. Formally, the modified reward

parameter, is defined as:

~rrsi ðpÞ ¼ ~rrsi ðp; biÞ ¼
X
m2M

X
c2I

rscðpÞE½zc jm; bi�qðmÞ ð24Þ

where E½zc jm; bi� denotes the expected number of cate-

gory c calls which occupy a bandwidth portion bi [Mbps],

given that the link occupancy is m.

The expectation E½zc jm; bi� is determined from the

probability P½c jm� of finding a unit bandwidth occupied
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by category c, given that the link occupancy is m, multi-

plied by the number of category c calls that fits into the

bandwidth portion of a category i call:

~rrsi ðpÞ ¼
X
m2M

X
c2I

rscðpÞP½c jm�
bi

bc
qðmÞ ¼

X
c2I

rscðpÞPðcÞ
bi

bc

ð25Þ

Finally, we use the fact that the probability PðcÞ of find-

ing a category c call on the link is proportional to the rela-

tive portion of accepted category c calls:

~rrsi ðpÞ ¼
X
c2I

rscðpÞ
l
s

cðpÞP
d2I l

s

dðpÞ
bi

bc
ð26Þ

Note that the fraction of the bandwidth bi [Mbps] which

is devoted, on average, to category c will change every

time the link occupancy m changes. Our proposed reward

model gives the average contribution of category c over the

whole state space M. Formally, the average contribution is

computed as weighted sum over the state space, with

weights given by the probabilities qðmÞ.
Figure 2 illustrates the computation of macro-scale

bandwidth shares from micro-scale bandwidth shares, in

an example where m ¼ 24 is shared equally among two

categories.

The fact that state aggregation employs one-step policy

iteration means that the policy improvement step is impli-

citly implemented by selecting the path with maximum

path net-gain (no explicit policy improvement step is

necessary for each link). Since the relative values for each

link are less prone to change at each adaptation epoch,

convergence occurs faster than for the exact link MDP

model.

3.4. Approximate link MDP model by
Hwang, Kurose and Towsley

In Reference [9], Hwang, Kurose and Towsley proposed a

link MDP framework with scalar state representing the

link occupancy. A birth-death process based on the Pascal

approximation [3] drives the one-dimensional Markov

chain. Without loss of generality, the authors assume that

the bandwidth requirements of the call categories are

ordered as 14b14b24 � � �4bG�14bG and the holding

time of the first category, 1=m1, is normalized to 1.

Transitions to the next state above the current state are

always allowed, and transitions to the state below the cur-

rent state occur at unit rate. The state transition probabil-

ities are as follows:

pmn ¼
�sðm; pÞ�ðmÞ; n ¼ mþ 1 2 M; i 2 I

m�ðmÞ; n ¼ m� 1 2 M; i 2 I

0; otherwise

8<
: ð27Þ

where the birth rate �sðm; pÞ is given by:

�sðm; pÞ ¼ �sðm; pÞ2

�sðm; pÞ2
þ m 1 � �sðm; pÞ

�sðm; pÞ2

" #
ð28Þ

where the quantities �sðm; pÞ and �sðm;pÞ are given by:

�sðm; pÞ ¼
X
i2I

bil
s
i ðm; pÞ
mi

ð29Þ

�sðm; pÞ2 ¼
X
i2I

b2
i l

s
i ðm; pÞ
mi

ð30Þ

where lsi ðm; pÞ is given by a formula analogous to

Equation (9). The expected sojourn time in state m is given

by:
�ðmÞ ¼ mþ �sðm; pÞf g�1 ð31Þ

The MDP framework proposed by Hwang, Kurose and

Towsley [9] is based on cost minimization instead of

reward maximization. The expected cost incurred in state

m is given by WsðmÞ ¼ �sðmÞ�ðmÞ, where �sðmÞ denotes

the cost accumulation rate. Hwang, Kurose and Towsley

originally define the cost accumulation rate as follows [9]:

�sðmÞ¼
0; 04m4Cs � bGP

i2I ai�
s
i ðm; pÞ; Cs � bi < m4Cs � bi�1P

i2Ið1 � aiÞ�si ðm;pÞ; m ¼ Cs

8<
:

ð32Þ

where �si ðm; pÞ ¼ rsi ðpÞlsi ðm; pÞ and ai is a category-

dependent heuristic parameter which always is 0 for

i ¼ 1 and ai > 0 for i > 1.

3.5. Approximate link MDP model by
Krishnan and Hübner

Krishnan’s and Hübner’s MDP framework [11] is also

based on state aggregation and cost minimization. The

Figure 2. The aggregate bandwidth m on the macro-bandwidth
scale is shared between the categories i in proportion to the
probability P½i jm� of occupying a single bandwidth unit on the
micro-bandwidth scale.
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state space and the state transition probabilities are

the same as for the MDP framework presented in

Section 3.3, which was based on reward maximization.

The expected cost incurred in state m is given by

Wsðm; aÞ ¼ �sðm; aÞ�ðm; aÞ, where the cost accumulation

rate �sðm; aÞ is given by:

�sðm; aÞ ¼
X
i2I

lsi ðm; pÞrsi ðpÞð1 � aiÞ ð33Þ

where a ¼ faig ¼ psðmÞ denotes the link CAC decision in

state m. Thus, this cost formulation does not model the sta-

tistical resource sharing discussed in Section 3.3. Apart

from this and the employment of cost minimization, the

frameworks are identical.

4. MDP COMPUTATIONAL PROCEDURE

This section outlines the MDP computational procedure

for determining a near-optimal CAC and routing policy

using the exact link model. The following formulas are

also valid for the link models based on state aggregation

with the modified reward parameter provided the follow-

ing variable substitutions are done:

� decomposed network state: y ! n,

� link state: x ! m,

� reward parameter: rsi ðpÞ ! ~rrsi ðpÞ and

� increment in link state: �i ! bi.

The central idea is to compute path net-gain functions,

gkj ðy; pÞ, which estimate the increase in long-term reward

due to admission of a class j call on path k in network state

y. The CAC and routing rule is simply to choose, given the

state of the network and the class of the call request, a path

which offers maximal positive path net-gain among the

paths with sufficient QoS (see Figure 3). The call is

rejected if the path net-gain is negative, or if no path would

offer sufficient QoS.

4.1. Basic definitions

The state-dependent path net-gain is defined as:

gkj ðy; pÞ ¼ rj �
X
s2Sk

psi ðx; pÞ ð34Þ

where y ¼ fxg denotes the network state in the decomposed

network model. The link shadow price psi ðx; pÞ can be inter-

preted as the expected cost for accepting an ith category call

in state x ¼ fxig. In the reward maximization MDP frame-

work the link shadow price is defined as follows:

psi ðx; pÞ ¼ rsi ðpÞ � gsi ðx;pÞ ð35Þ

where gsi ðx; pÞ denotes the link net-gain for admission of a

category i call in state x. The link net-gain expresses the

increase in long-term reward due to admission of a cate-

gory i call in link state x and is defined, for the reward

maximization MDP framework, as follows:

gsi ðx; pÞ ¼ vsðxþ �i;pÞ � vsðx; pÞ ð36Þ

where vsðx; pÞ denotes the relative value for category i in

state x and �i denotes a vector of zeros except for a one in

position i.

In the cost minimization, MDP framework the link sha-

dow price is defined as follows:

psi ðx; pÞ ¼ vsðxþ �i;pÞ � vsðx; pÞ ð37Þ

To give more insight into the definition of relative values,

let us define the expected link reward, Rsðx0; p; TÞ,
obtained in an interval ðt0; t0 þ TÞ of length T , assuming

state x0 at time t0:

Rsðx0; p; TÞ ¼ E

ðt0þT

t0

qsðxðtÞÞ dt

� �
ð38Þ

where qsðxðtÞÞ denotes the reward accumulation rate

in state xðtÞ. The process fxðtÞg is driven by a probabi-

listic law of motion specified by certain state transition

probabilities.

The relative value can now be written as:

vsðx0; pÞ ¼ lim
T!1

Rsðx0; p; TÞ � Rsðxr; p; TÞ½ � ð39Þ

That is, the relative value in state x0 is defined as the dif-

ference in future reward earnings when starting in the

given state, compared to a reference state, xr. In practice,

the relative value function is obtained by solving a set of

linear equations (see below).

4.2. Adaptation of the CAC and routing policy

The algorithm for determining the near-optimal CAC and

routing policy p can be summarized as follows:

Figure 3. The call is offered to a path which has sufficient
QoS and maximal positive path net-gain among the H ¼ jWjj
alternative paths.
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1. Startup: Initialize the relative values vsðx; pÞ in a way

that make all link net-gains with permissible admission

positive.

2. On-line operation phase: Measure per-path call accep-

tance rates l
k

j ðpÞ and per-link blocking probabilities

Bc
j ðpÞ while employing the maximum path net-gain rout-

ing rule. Perform the measurements for a sufficiently long

period for the system to attain statistical equilibrium.

3. Policy iteration cycle: At the end of the measurement

period, perform the following steps for all links s in

the network:

(a) Identify the link MDP model: Determine per-

category reward parameters rsi ðpÞ and link call

arrival rates lsi ðx; pÞ.
(b) Value determination: Find the relative values

vsðx; pÞ and average reward rate R
sðpÞ for the cur-

rent routing policy p.

(c) Policy improvement: Find the new link CAC poli-

cies p0s based on the new relative values and the

new average reward rate.

4. Convergence test: Repeat from 2 until average reward

per time unit converges.

According to MDP theory an optimal policy is found

after a finite number of policy iterations in case of a finite

state and policy space [19].

4.2.1. Value determination. The value determination step

for link s determines the relative values vsðx; pÞ for all states

x 2 X by solving a sparse system of linear equations:

vsðx; pÞ¼Rsðx; aÞ � R
sðpÞ�ðx; aÞþ

P
y2X pxyðaÞvsðy; pÞ

vsðxr; pÞ ¼ 0; x 2 X

�
ð40Þ

where the following quantities need to be specified:

� X: the state space, i.e. the set of possible states,

� a ¼ psðxÞ: the control action in state x,

� �ðx; aÞ: the expected sojourn time in state x,

� Rsðx; aÞ: the expected link reward when leaving state x,

� pxyðaÞ: the transition probability from state x to state y,

given that action a is taken in state x,

� xr: the reference state (e.g. the empty state),

in order to compute the unknowns:

� vsðx; pÞ: the relative value in state x under routing policy

p,

� R
sðpÞ: the average rate of link reward under policy p.

The computation (time) complexity of the value deter-

mination step of policy iteration is a function of the size,

S, of the state space. Traditional Gauss elimination has

complexity OðS3Þ. This can be seen as an upper limit of

the actual complexity since the system is sparse and more

efficient iterative algorithms can be used.

4.2.2. Policy improvement. The policy improvement step

for link s consists of finding the action that maximizes the

relative value in each state x 2 X:

a¼argmax
u2AðxÞ Rsðx; uÞ � R

sðpÞ�ðx; uÞþ
X
y2X

pxyðuÞvsðy; pÞ
( )

ð41Þ

where AðxÞ denotes the set of possible actions in state x.

The set of actions which yields the maximum improve-

ment of relative values constitute an improved policy p0s
to be used again in the first step. The policy improvement

step has complexity Oð2GSÞ, where G denotes the number

of unique bandwidth categories.

5. NUMERICAL RESULTS

5.1. Considered routing algorithms

The routing algorithms that are considered in the numeri-

cal experiments can be classified into MDP based routing

algorithms and conventional routing algorithms. Eight

MDP based routing algorithms are compared:

� MDP: MDP routing by reward maximization based on

exact link model [7],

� MDP_P: MDP method with priority for the shortest

path,

� MDP_K: MDP routing by cost minimization using

Krishnan’s and Hübner’s state aggregation

method [11] with original link reward para-

meters defined by Equation (3),

� MDP_Kþ: MDP_K routing with modified link reward

parameters defined by Equation (26),

� MDP_Nþ: The new MDP routing framework based on

reward maximization and modified reward

parameters, proposed in Section 3.3,

� MDP_PNþ: MDP_Nþ method with priority for the

shortest path,

� MDP_H: MDP routing by cost minimization using

Hwang’s, Kurose’s and Towsley’s state

aggregation scheme [9],

� MDP_PH: MDP_H method with priority for the short-

est path.

One conventional routing method, the LLR method, is

included in the evaluation. The reason for choosing LLR
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is that it is among the routing methods with best perfor-

mance [1, 4]. The LLR routing method is implemented

in many countries, including USA and Canada. We are

not aware of any implementation of MDP routing in real

networks.

The LLR algorithm works as follows. When a class

j call request is received, the set of shortest paths Wn
j

with n links is considered first. Among this set, a path

with largest free capacity of the bottleneck link greater

than or equal to the bandwidth requirement bj and

greater than the trunk reservation value �nj is searched

for. The bottleneck link is the link with least free

capacity along the path. Note that a unique trunk reserva-

tion value is used for every call from class j that is

offered to the set of shortest paths of length n. If all

paths have insufficient free bandwidth, the call is offered

the next set of (longer) shortest paths, and the routing

procedure is repeated. The procedure stops when a

feasible path among the set of shortest paths is found, or

when no path between the OD pair offers sufficient free

bandwidth.

The priority mechanism for MDP routing works as fol-

lows. The set of shortest paths with sufficient free capacity

is considered first. The call is offered to the path with lar-

gest positive path-net gain among this set. If no path has

positive path-net gain, the next set of (longer) shortest

paths is considered. The procedure stops when a feasible

path with maximum positive path net-gain is found among

the set of shortest paths, or when no path between the OD

pair offers sufficient free bandwidth.

5.2. Examples and results

The performance analysis is performed for the network

examples W6N and W13N described in Table 1. The

topologies of W6N and W13N is based on an example

in References [2, 12] respectively. The topologies are

shown in Figure 4. The link capacities and offered traffic

volumes for network example W6N are based on the

example in Reference [2] and is shown in Table 2. Net-

work W6N corresponds to an STM type network, while

network W13N corresponds to an ATM type network.

The OD pairs in W6N are offered different traffic volumes

(asymmetric case), while the OD pairs in W13N are

offered the same traffic volumes (symmetric case). The

algorithm specific parameter settings, presented in

Table 3, were determined heuristically based on simulation

experience.

Each curve in the diagrams contains N simulation

points, xk; k ¼ 1; . . . ;N, which are obtained as averages

over M simulation runs per point: xk ¼ 1
M

PM
i¼1 xik. For

assessment of the accuracy of the simulation results, we

present values of the pooled standard deviation of simu-

lation results in Tables 4 and 5 respectively. We compute

Table 1. Description of network example.

W6N W13N

Symmetrical No No
Number of nodes 6 13
Number of bi-directional links 15 21
Number of OD pairs 30 156
Number of routes per OD pair 5 1–7
Link capacity [Mbps] 12–192 50–100
Network capacity [Mbps] 2484 2400
Maximum number of links in path 2 4
Number of traffic categories 2 2
Mean holding time [s] 1, 10 1, 10
Bandwidth bi [Mbps] 1, 6 1, 6
Network traffic [Mbps*Erlang] 1816.8 624.0
r0j ¼ rjmj=bj 1 1

Figure 4. Network examples W6N and W13N.

Table 2. Link capacity and offered traffic for W6N.

Link Link capacity Offered traffic
[Mbps] [Mbps*Erlang]

1,2 36 32.96
1,3 24 8.36
1,4 162 154.68
1,5 48 24.56
1,6 48 34.93
2,3 96 30.13
2,4 96 121.93
2,5 108 92.14
2,6 96 99.07
3,4 12 14.30
3,5 48 8.23
3,6 24 15.90
4,5 192 95.30
4,6 84 99.60
5,6 168 76.27
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the pooled standard deviation over the N simulation

points as:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

s2
k

vuut ð42Þ

where s2
k denotes the sample variance of the value of point

k:

s2
k ¼

1

M � 1

XM
i¼1

ðxik � xkÞ2 ð43Þ

Table 6 shows the average simulation time and pooled

standard deviation for one of M simulation runs carried

out for each of the N simulation points per curve. The table

is based on CPU time measurements for the first set of fig-

ures. One simulation run consists of an initial ‘warm up’

period, followed by a number of adaptation periods in case

MDP routing is used, and finally a measurement period.

Each adaptation period consists of a measurement period

followed by a policy iteration step.

Figures 5–12 show the reward loss, L ¼ 1 � R=R, for

the complete set of routing algorithms as a function of

the traffic ratio. The ratio of OD-pair traffic is measured

by bnlnm�1
n =bwlwm�1

w . Different mixes are obtained by

varying the per-category call arrival rate to the OD pairs

between the simulations, while keeping the amount of

Table 3. Algorithm specific parameters.

MDP adaptation epochs 6
MDP_K adaptation epochs 4
MDP_Kþ adaptation epochs 4
MDP_Nþ adaptation epochs 4
MDP_H adaptation epochs 4
Call events in warm up period 500 000
Call events in adaptation period 1000 000
Call events in measurement period 1000 000
Number of simulation points per curve N 19
Number of simulation runs per point M 20
Hwang’s heuristic parameter a1 0
Hwang’s heuristic parameter a2 0.1
Trunk reservation parameter �nj 0
Filtering probability �s

j ðx; pÞ 1.0

Table 4. Pooled standard deviation in simulations with variable
traffic ratio.

W6N pooled reward W13N pooled reward
loss SD (%) loss SD (%)

MDP 0.65 0.03
MDP_P 0.32 0.03
MDP_K 0.03 0.02
MDP_Kþ 0.03 0.03
MDP_Nþ 0.03 0.03
MDP_PNþ 0.03 0.03
MDP_H 0.06 0.03
MDP_PH 0.05 0.04
LLR 0.04 0.04

Table 5. Pooled standard deviation in simulations with variable WB normalized reward parameter.

W6N W6N W13N W13N
pooled pooled pooled pooled

NB blocking WB blocking NB blocking WB blocking
probability probability probability probability

SD (%) SD (%) SD (%) SD (%)

MDP 2.1 1.2 0.2 0.1
MDP_Nþ 0.0 0.0 0.0 0.0
MDP_H 0.1 0.2 0.0 0.1

Table 6. CPU time for one simulation run in one point in
simulations with variable traffic ratio.

W6N W13N
simulation simulation
CPU time CPU time

average (SD) (s) average (SD) (s)

MDP 161.0 (6.4) 96.5 (2.0)
MDP_P 151.8 (2.4) 71.9 (0.9)
MDP_K 45.2 (0.2) 49.6 (0.1)
MDP_Kþ 45.7 (0.4) 49.3 (0.1)
MDP_Nþ 45.1 (0.1) 50.0 (0.1)
MDP_PNþ 37.5 (0.1) 39.1 (0.1)
MDP_H 45.6 (0.1) 49.6 (0.1)
MDP_PH 37.6 (0.1) 40.9 (0.1)
LLR 8.9 (0.1) 9.2 (0.1)
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traffic per OD pair constant. All OD pairs were offered the

same per-category call arrival rates within a simulation.

Figures 13–16 show the per-category call blocking

probability as a function of the normalized WB reward

parameter for a restricted set of routing algorithms. The

normalized reward parameter, r0j , for class j fulfills

r0j ¼ rjmj=bj. We present the best results, which are

obtained by varying the r0WB parameter while keeping

r0NB ¼ 1 for networks W6N and W13N. In the simulations,

we have assumed a traffic ratio of 1.0, measured by

bnlnm�1
n =bwlwm�1

w , for each OD pair.

5.3. Results analysis

From the graphs in Figures 5–12, the following conclu-

sions are drawn:

� The exact MDP method has the lowest reward loss.

� The LLR method has relatively high reward loss.

� The MDP_K method has relatively high reward loss.

� The MDP_Kþ method has reward loss close to the exact

MDP method, except for network W6N when WB traf-

fic dominates.

� The MDP_Nþ method has identical reward loss as the

MDP_Kþ method.

� The MDP_H method has higher reward loss than the

MDP_Nþ and MDP_Kþ methods, except for network

W6N when WB traffic dominates.

� The MDP priority mechanism is beneficial for W6N

when WB traffic dominates but not for W13N in case

the MDP_Nþ, MDP_Kþ or MDP_H method is used.

Figure 5. Reward loss versus traffic ratio for network W6N
(reference methods).

Figure 6. Reward loss versus traffic ratio for network W13N
(reference methods).

Figure 7. Reward loss versus traffic ratio for network W6N
(Krishnan’s method).

Figure 8. Reward loss versus traffic ratio for network W13N
(Krishnan’s method).
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� The MDP priority mechanism is not beneficial in case

the exact MDP method is used.

From the graphs in Figures 13–16, the following conclu-

sions are drawn:

� The ratio between the NB and WB call blocking prob-

ability can be controlled by varying the normalized WB

reward parameter provided we use the MDP or

MDP_Nþ methods.

� The ratio between the NB and WB call blocking prob-

ability is not sensitive to changes in the normalized WB

reward parameter provided we use the MDP_H method.

6. CONCLUSION

An optimal solution of the CAC and routing problem in

multi-service loss networks, in terms of average reward

per time unit, is possible by modeling the behavior of

the network as a MDP. However, even after applying the

standard link independence assumption, the solution of

the corresponding set of link problems may involve con-

siderable numerical computation.

In this paper, we studied an approximate MDP frame-

work on the link level, where the vector-valued MDP states

are mapped into a set of aggregate scalar MDP states

Figure 9. Reward loss versus traffic ratio for network W6N (new
method).

Figure 10. Reward loss versus traffic ratio for network W13N
(new method).

Figure 11. Reward loss versus traffic ratio for network W6N
(Hwang’s method).

Figure 12. Reward loss versus traffic ratio for network W13N
(Hwang’s method).
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corresponding to link occupancies. In particular, we

proposed a new model of the expected reward for ad-

mitting a call on the network. Compared to Krishnan’s

and Hübner’s method [11], our reward model more accu-

rately reflects the bandwidth occupancy by different call

categories.

The new reward model is matched to the bandwidth

sharing model in the state aggregation framework. In the

new reward model, each reward-generating bandwidth unit

is shared, from a conceptual viewpoint, between all call

categories present on the link. In the old reward model,

each bandwidth unit is only occupied by one call category.

As a result, the new reward model enables a more accurate

modeling of the path net-gain values, and forms the basis

for more efficient CAC and routing decisions.

The exact and approximate link MDP frameworks were

compared by simulations. The results showed that the pro-

posed link reward model significantly improves the per-

formance of MDP-based CAC and routing with state

aggregation.

Figure 13. NB and WB call blocking probabilities versus nor-
malized WB reward parameter for W6N (reference MDP
method).

Figure 14. NB and WB call blocking probabilities versus nor-
malized WB reward parameter for W13N (reference MDP
method).

Figure 15. NB and WB call blocking probabilities versus nor-
malized WB reward parameter for W6N (state aggregation MDP
methods).

Figure 16. NB and WB call blocking probabilities versus nor-
malized WB reward parameter for W13N (state aggregation
MDP methods).
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