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Abstract. In this paper we study the call admission control (CAC)
problem for a single link in multi-service loss networks. Each call is
described by a reward parameter representing the expected reward for
carrying this call. The control objective is to maximize the reward from
carried calls. The behavior of the link is modeled as a Markov Decision
Process (MDP). The standard link MDP model assumes a Poisson call
arrival process and exponentially distributed call holding times. How-
ever, some services on the Internet, such as the World Wide Web ser-
vice, have self-similar call arrival processes and heavy-tailed holding
time distributions. In this paper we assume a simple call traffic model
consisting of a single call category with general renewal arrivals and ex-
ponential holding time distribution. We present an extended link MDP
model based on an embedded controlled Markov chain for this traffic
model. The numerical results show that the proposed link MDP model
provides accurate estimates of the reward loss.

1 Introduction

We consider the problem of Call Admission Control (CAC) on a single link in
multi-service loss networks such as ATM and STM networks, and IP networks,
provided they are extended with resource reservation capabilities. The objec-
tive is to maximize the revenue from carried calls, while meeting constraints
on the Quality of Service (QoS) and Grade of Service (GoS) on the packet and
call level, respectively.

This paper deals with a particular form of state-dependent CAC on the
link level, where the behavior of the link is formulated as Markov Decision
Process (MDP) [7, 17]. A MDP is a controlled Markov process, where the set of
state transitions from the current Markov state to other Markov states depends
on the decision or action taken by the controller in the current state. In the
MDP framework, each call is described by a expected reward parameter and
the objective is to maximize the reward from carried calls.



A necessary modeling simplification in MDP-based network routing is to
decompose the network into a set of links assumed to have independent traffic
and reward processes, respectively. When formulating the MDP framework for
each link, calls with the same bandwidth requirement are aggregated into a
common category.

The first issue of traffic modeling concerns the arrival and service pro-
cess for each of the

�
call categories offered to the link. Measurements on

real world wide web (WWW), network news (NNTP) and email (SMTP) con-
nection arrivals in the Internet have revealed that the arrival process shows
burstiness over many time scales, ranging from seconds to hours. Paxson and
Floyd found that actual WAN traffic is consistent with statistical self-similarity
for sufficiently large time scales [14]. However, models of WAN connection
arrivals include self-similar models [5, 4] and non-self-similar models [9]. In
this paper we adopt the model of Anja Feldmann who proposed a certain non-
Poisson renewal call arrival process model [9]. The main reasons for adopting
a renewal model is its simplicity and the fact this model provides an accurate
fit to real TCP connection arrival statistics, see [9]. The particular renewal pro-
cess has interarrival times that follow a Weibull distribution in contrast to the
Poisson process which has exponentially distributed inter-arrival times. For the
range of distribution parameters plausible for TCP connection arrivals within
WWW sessions, the complementary Weibull distribution decays slower (has
a more heavy tail) than the standard exponential distribution. Measurements
have also shown that the complementary distribution of holding times of TCP
connections within WWW and file transfer (FTP) sessions decays slower than
exponentially [4, 5, 14]. In this paper we limit ourselves to the exponential
holding time distribution since this case is easier to handle than the case with
heavy-tailed holding time distribution.

The second issue of traffic modeling concerns the superposition of per-
category renewal arrival and service processes. Cherry presented in [1] an early
result that the superposition of two renewal processes is a Markov Renewal
Process (MRP), which has an equivalent semi Markov Process (SMP) repre-
sentation. The SMP is a continuous-time discrete-state Markov process with
generally distributed state sojourn times. The MRP may be shown to be equiv-
alent to the family of SMP [3]. Thus, the SMP records the state of the process
at each time point � , while the MRP is a point (counting) process which records
the number of times each of the possible states has been visited up to time � .
Note that the superposed arrival process is autocorrelated and is therefore not
renewal.

In general, the task of optimal CAC for a link offered renewal per-category
arrivals and exponential service times can be formulated as a semi-Markov
decision process (SMDP) [16, 8]. In case of a Poisson arrival process, and ex-
ponential service process, the state vector represents the number of active calls



from each category. The state transition probabilities, which are part of the
MDP model, become easy to formulate. This is due to the memoryless prop-
erty of the exponential distribution: the probability of the next event being an
arrival/departure is independent of the time offset between the latest arrival and
the latest departure. This is not the case if we replace the Poisson process with
a non-Poisson process such as the Weibull process: the probability of the next
event being an arrival/departure now becomes dependent on the time between
the latest arrival and the latest departure.

Optimal CAC for one call category with renewal arrival process and Markov
service process can be modeled in at least two ways. In the first way, which was
described in a previous paper [12], the SMDP for the superposition of arrival
and service process is constructed using the method of supplementary vari-
ables [2] The method of supplementary variables applies to the
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queuing system. By intro-
ducing new state variables, which contain information about the type of the
latest event, and the time offset between the latest event and the latest com-
plementary event, the Markov property can be preserved, resulting in a SMDP.
The state sojourn time of this SMDP will be non-exponential. The supplemene-
tary variables makes the state space very large. The second way, based on the
embedded Markov chain method [11], was first proposed by Yechiali for access
control of the

����������	
queue [18]. In this method the arrival instants are used

as regeneration epochs of the Markov chain. Its main advantage is that the state
space is sigificantly smaller than for the method of supplementary variables.
The state sojourn time of the corresponding SMDP will be non-exponential.
The basic method of the embedded controlled Markov chain is restricted to the
one category case.

The case with multiple categories can be treated in at least two ways.
Both ways involves the basic method of supplementary variables, either on its
own, or in combination (hybrid) with the embedded controlled Markov chain
method. The size of the state space will be smaller for the hybrid method which
we recommend to use in case of two categories. In case of three or more cate-
gories the size of the state space will be very large even for the hybrid method.

For a full version of this paper, see [13], which presents up to date versions
of the extended link MDP models, and a discussion on how to deal with the
network case.

The paper is organized as follows. Section 2 formulates the CAC problem
in terms of offered traffic and optimization objective. Section 3 describes dif-
ferent models of the call arrival process and service process. Section 4 outlines
the MDP model for the embedded controlled Markov chain for a link operating
in loss mode. Section 5 evaluates the standard and the link MDP models based
on the method of supplementary variables and the method of embedded con-



trolled Markov chain using numerical/simulation techniques. Finally, Section
6 concludes the paper.

2 Problem Formulation

We consider a single communication link with capacity
	

Mbps. The link is of-
fered traffic from

�
categories which are, for sake of simplicity, assumed to be

subject to deterministic multiplexing. The � -th category, ��� �������
�������������
,

is characterized by the following:

– Bandwidth requirement  �! [Mbps],
– General call arrival process

�#"%$&�
with two special cases:' Poisson process with mean arrival rate ( ! [s )+* ],' Weibull process characterized by scale parameter ,-! and shape param-

eter .�! ,
– Exponential service process

�0/�$��
with mean 1/ 1+! [s],

– Reward parameter 2 ! �4365 �87:9
The task is to find an optimal link CAC policy ;=< which maximizes the mean
reward from the link, defined as> 36; 9?�A@ !6B
C 2 ! ( ! (1)

where (D! denotes the average category- � acceptance rate.

3 Modeling of Call Traffic

3.1 Arrival Process Model

Since the days of Erlang the Poisson model has commonly been used to de-
scribe the random arrivals of call requests to the OD pairs of a telephone net-
work. Although the Poisson model serves its purpose in telephone networks,
it lacks descriptive power in the case of Internet where a substantial portion
of traffic is WWW, NNTP and SMTP connections transported by TCP. The
WWW, NNTP and SMTP services produce connection arrivals which are dif-
ferent in nature from the telephone service; For example, a person using the
WWW service is more likely to initiate additional downloads after the first
download. A person using the telephone service is more likely to initiate inde-
pendent calls.

Measurements on real WWW, NNTP and SMTP connection arrivals in the
Internet have revealed that the arrival process shows burstiness over many time
scales, ranging from seconds to hours. Paxson and Floyd found that actual



WAN traffic is consistent with statistical self-similarity for sufficiently large
time scales [14]. These findings have been verified by Feldmann et al. [10].

Crovella has proposed an ON/OFF model for the downloading of web doc-
uments [4]. A single TCP connection is invoked in each ON period. The dura-
tion of the TCP connection follows a heavy-tailed distribution since the distri-
bution of WWW document sizes on Internet is heavy-tailed. The OFF period
corresponds to the user thinking time. Crovella argues that also the OFF period
is heavy-tailed.

Deng also developed an ON/OFF model for the web service [5]. During
the ON period, the user makes multiple web requests each resulting in a new
TCP connection. The OFF period is the time between two ON periods while
the user views the page. Deng proposed distributions for three parameters: the
duration of the ON period was found to be Pareto distributed, the duration of
the OFF period was found to be Weibull distributed as well as the inter-arrival
time of web requests during the ON period.

Feldmann has proposed to model the arrivals of TCP connections by a

Weibull interarrival time distribution [9]:
" 3E� 9F�HG 3 "%$JI � 9F�K�MLON ) 3
PQ 9�R ,

where S represent the discrete time index. The Weibull model provides an ac-
curate fit to real TCP connection arrival statistics. The Weibull distribution has
finite moments, including finite mean and variance of the inter-arrival time. For
this reason the Weibull distribution is considered to have a light tail. Since its
variance is finite the Weibull distribution does not give rise to a self-similar
arrival process. Indeed, Downey claims [6] that there is little evidence that the
times between WWW requests form a heavy-tailed distribution, which would
give rise to the simplest form of self-similar traffic.

3.2 Service Process Model

The traditional model of call holding times
/ $

is the (negative) exponential
distribution with rate parameter 1 :

/ 3E� 9M� P 3 / $ I � 9��T�ML
exp 3 L 1U� 9 . The

exponential distribution match the actual holding times in case of telephony
among other services. However, for the WWW and FTP service, the connection
holding time is more heavy tailed [4, 5, 14].

4 Link Model based on Embedded Markov Chain

A one-dimensional embedded Markov chain can be defined at the arrival in-
stants. Let V $ be the number of calls found upon arrival of the S th call. ThenV $ is a one-dimensional embedded Markov chain with state space

V �W��XZY�X�� 5 ������[�[�[8�&\]	F�  �^ �&� (2)



The control action space is given by"A�_��` � � 5 �������=� (3)

where
`O� 5 denotes call rejection and

`O�a�
denotes call acceptance. The

permissible action space is a state-dependent subset of
"

:" 3 X�9b�W��` � "cY�`
� 5 if
Xedf�%gh\6	%�  �^ �=[ (4)

Let i $ be a stochastic process of discrete time S �j�
�lk���[�[�[
representing

the number of calls served between the arrival of the 3mS LZ�09 �on and the S th call.
Let

` $
be the admission decision for the S th call request. Then

V $8p * � V $qdO`�$ML i $8p * � (5)

The state transition probabilities are:

rDs0t 3 `�9u�wvyxz { X|dO`} ~O� ��L�N )��#��� s p�� ) t N ) t �#��� " 36� 98[ (6)

The expected reward in state
X

is given by> 3 X��o`�9u�T@t B
� rDs0t 3 `�9 2�3 X�L } dO`�9 (7)

The mean sojourn time in state
X

is:

� 3 X��o`�9b�K@t B
� v xz � { X�d4`} ~ � ��L�N )��#�m� s p�� ) t N ) t �#��� " 3E� 9?��� � " $ � (8)

5 Numerical Results

5.1 Considered Link Models

The performance analysis is performed for the single link case. Three MDP
models for CAC are compared numerically:

– MDP – standard link model assuming Poisson call arrivals [8],
– MDP S – extended link model based on the method of supplementary vari-

ables proposed in [12],
– MDP E – extended link model based on the embedded Markov chain de-

scribed in Section 4.

The integrals present in the MDP S and MDP E link models are solved by
the Simpson’s numerical integration method [15].



5.2 Examples and Results

The simulation scenario is described in Table 1. The traffic parameters are cho-
sen such that the link load becomes moderate (83 % of link capacity). Each
measurement period is based on

����� 5&� call events.

Table 1. Description of simulation scenario

link capacity � [Mbps] 24
traffic categories � 1
mean arrival rate � [ �#�D� ] 20
mean holding time ���8� [s] 1
bandwidth � [Mbps] 1
link traffic [Mbps*Erlang] 20
reward parameter � 1
#offset values ��� 30-120

First, the Weibull shape parameter . is set to some value in the set� 5 [ �
� 5 [ k-��[�[�[l����[ 5 � . Second, the Weibull scale parameter , is set to , � *¡�¢ * pM£R�¤6¥
which gives equal mean interarrival time for the Poisson and Weibull process.

The performance of CAC is evaluated in terms of the reward loss ¦ :¦ �c��L > � > � (9)

where
> �¨§ !EB
C 2�! (©! and

> �¨§ !6B
C 2�!�(©! denotes the carried and offered
reward rate, respectively.

The optimal access policy for a single call category is to always accept a
new call when there is sufficient free capacity on the link. The corresponding
access policy is known as complete sharing (CS). The loss results for MDP,
MDP S and MDP E are obtained by solving a linear equation system for the
relative values and the average reward rate

>
. We evaluate the modeling ac-

curacy of the MDP S and MDP E methods by the average reward rate. We
expect that the accuracy of the relative values will be similar to the accuracy of
the average reward rate.

5.3 Results Analysis

From the graphs in Figure 1 the following conclusions are drawn:

– The standard MDP method models the reward loss accurately only for
Poisson traffic (c=1),

– The MDP S method estimates the reward loss accurately.
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Fig. 1. Reward loss versus Weibull shape parameter « .

– The MDP E method estimates the reward loss accurately.

The number of offset values, ¬|­ , was adapted to the Weibull parameter . .
A smaller . parameter required a larger ¬|­ value. The case . � 5 [ � was not
considered by the MDP S method due to the large state space associated with
the large ¬ ­ value.

6 Conclusion

In this paper we formulated the CAC problem for a single link operating in
loss mode. In this formulation each call category is characterized by its reward
parameter defining the expected reward for carrying a call from this category.
Such a formulation allows to apply Markov Decision Process (MDP) theory to
solve the problem.

Traditionally, the MDP approach to CAC and routing has assumed Poisson
call arrivals and exponentially distributed call holding times. These assump-
tions are reasonable for telephone calls. However, they become inaccurate for
the TCP connections invoked within the WWW, NNTP and SMTP Internet
services. In particular, measurements on real Internet traffic have revealed that
the TCP connection arrival process is self-similar and that TCP connection
holding time distribution is more heavy tailed than the standard exponential
distribution.



In this paper we adopt a simple model of call traffic since this simplifies
the MDP model. Call arrivals are modeled by a non-self-similar renewal model
with Weibull distributed interarrival times [9]. Call service times are modeled
by an exponential distribution. Given this traffic model, we propose an ex-
tended MDP model for a single call category. The MDP model is based on
the embedded Markov chain method [11]. The numerical results show that the
proposed link MDP model provides accurate estimates of the reward loss.

A long-term goal of this work is near-optimal CAC and routing on the net-
work level, with general arrivals from multiple call categories. In order to meet
these goals we need to design an extended link MDP for general arrivals from
multiple call categories, as well as a model of the superposed arrival process to
a network link.
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